

national accelerator laboratory

EXP-21
August 23, 1972

ACCELERATOR EXPERIMENT -- Remanent Sextupole Field in the Main Ring

Experimentalists: R. Stiening

Date Performed: July 22, 1972

A series of measurements of the tune (horizontal as well as vertical) have been made by R. Stiening just before the shut-down (July 22, 1972). The main purpose of these measurements was to find the dependence of the tune on momentum so that one can get a reasonably accurate estimate of the remanent sextupole field. Data used in this report are in the log book, Main Ring Experiments 2, pp. 68-89.

Since the vertical tune measurement is easier to interpret than the horizontal one, only the former is used to get the result.

Data

1.	7.24 GeV	(p. 89)		
	air-core	sextupol	e current	42 Amp
	total number			182

$$B_{y} = (B''/2) \cdot x^{2}$$

At 40A, B" = $19.7G/(inch)^2$ for air-core sextupoles. This corresponds to "6G-m/(inch)²" given by C. Rode. We also know that, for the vertical tune, the effect of B2 dipoles is stronger than that of B1,

$$\frac{\text{effect of Bl}}{\text{effect of B2}} = 0.637.$$

(For the horizontal tune, the ratio is 2.15.)

Data 1. 7.24 GeV

$$\xi \equiv 0.637 \text{ B}_{1}^{"}(\text{remanent, B1}) + \text{B}_{2}^{"}(\text{remanent, B2})$$

$$= -1.143 \text{ kG/m}^{2} = -.737 \text{ G/(inch)}^{2}$$

Data 2. 25.6 GeV, 17 Amp, 65 GeV/sec $m = 0.637 (B_1'' + b_1'') + (B_2'' + b_2'') = -0.679 \text{ kG/m}^2$ $= -0.438\text{G/(inch)}^2$

where b_1^n and b_2^n are for sextupole fields due to eddy current.

From ξ and η

$$0.637 b_1^n + b_2^n = 0.464 kG/m^2 = 0.299 G/(inch)^2$$

This should be compared with a theoretical value

$$(b_1^n = 0.322, b_2^n = 0.241)$$

0.637 $b_1^n + b_2^n = 0.446 \text{ kG/m}^2$.

Data 3. 25.6 GeV, 36.5 Amp, 65 GeV/sec $n = -0.648 \text{ kG/m}^2 = -0.418 \text{ G/(inch)}^2$ With $\xi = -1.143 \text{ kG/m}^2$, $0.637 \text{ b}_1'' + \text{b}_2'' = 0.495 \text{ kG/m}^2$

These values are in an excellent agreement with the results from Data 2 ($\sim5\%$).

We can also compare these results with a measurement of ${\rm B}_1^{\rm u}$ and ${\rm B}_2^{\rm u}$ (C. Schmidt),

$$B_1'' = -0.636 \text{ kG/m}^2, \quad B_2'' = -0.558 \text{ kG/m}^2$$

 $E_2 = 0.637 \quad B_1'' + B_2'' = -0.963 \text{ kG/m}^2$

Agreement with the result from Data 1 (-1.143 kG/m^2) is not at all bad.

S. Ohnuma